Fluid Flow over a Sharp and Blunt V-shaped Region
نویسندگان
چکیده
Tok tekutiny ostro lomeným potrubím v tvare V In this paper we study a viscous fluid flow over a V-shaped body for a range of Reynold's number from Re = 5 up to Re = 500. We solved the unsteady Naveir-stokes equations in the stream function vorticity formulation. The irregular physical domain is transformed into a rectangular shape using the elliptic grid generation. We applied the Finite diference discretization technique for governing the partial diferential equations, in this technique, the computational domain is covered by a pattern, network or mesh points called grid points. The governing equations are then reformulated at each interior point by replacing all partial derivatives with appropriate Finite diferences, thus converted to a set of discrete algebraic equations.
منابع مشابه
Fluid Flow and Heat Transfer over Staggered ꞌ+ꞌ Shaped Obstacles
The inclusion of complex obstacles within solar channels is the aim of this article. Two obstacles of the form ꞌ+ꞌ interlaced within a two-dimensional and rectangular channel are the subject of our study. The fluid is Newtonian, turbulent, incompressible and has constant properties. The Reynolds number varies from 12,000 to 32,000 with a constant temperature along the upper surface of the chann...
متن کاملLocal and Global Friction Factor in a Channel with V-Shaped Bottom
This paper presents an experimental research on the distribution of local friction factor, fb, and global friction factor, f, over the cross-section of a channel with V-shaped bottom, which typically occurs in sewers and culverts. Several series of experiments were conducted for measuring velocity and boundary shear stress. It is found that, Darcy-Weisbach, f, is more sensitive than other resis...
متن کاملFlow Variables Prediction Using Experimental, Computational Fluid Dynamic and Artificial Neural Network Models in a Sharp Bend
Bend existence induces changes in the flow pattern, velocity profiles and water surface. In the present study, based on experimental data, first three-dimensional computational fluid dynamic (CFD) model is simulated by using Fluent two-phase (water + air) as the free surface and the volume of fluid method, to predict the two significant variables (velocity and channel bed pressure) in 90º sharp...
متن کاملLaminar and Turbulent Aero Heating Predictions over Blunt Body in Hypersonic Flow
In the present work, an engineering method is developed to predict laminar and turbulent heating-rate solutions for blunt reentry spacecraft at hypersonic conditions. The calculation of aerodynamic heating around blunt bodies requires alternative solution of inviscid flow field around the hypersonic bodies. In this paper, the procedure is of an inverse nature, that is, a shock wave is assumed a...
متن کاملComputational fluid dynamics simulations of ship airwake
Computational fluid dynamics (CFD) simulations of ship airwakes are discussed in this article. CFD is used to simulate the airwakes of landing helicopter assault (LHA) and landing platform dock-17 (LPD-17) classes of ships. The focus is on capturing the massively separated flow from sharp edges of blunt bodies, while ignoring the viscous effects. A parallel, finitevolume flow solver is used wit...
متن کامل